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Outline

Two types of time resolved x-ray scattering experiments:
• “Classical” experiments

– Previous examples
– Possible futures

• “Speckle” experiments
– Example of wide-angle speckle experiment
– Possible futures

• Discussion of NSLS II
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Motivation for Ultrafast
Structural Studies

Our fundamental 
understanding of the static 
or time-averaged structure 
of matter on atomic length 
scales has been 
dramatically advanced by 
direct structural 
measurements using x-rays.

Example: Atomic positions in core 
of Reovirus

• molecular mass of 52 million
• unit cell of 1255Å

• core is 700Å in diameter

K.M. Reinish, M.L. Nibert & 
S. C. Harrison, Cell, 100, 

345-356 (2000).
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Motivation for Ultrafast
Structural Studies

However, the structure of matter is not static. 

Developing our understanding the fundamental 
behavior of matter requires structural 
measurements on the time-scale on which atoms 
rearrange.

Since the evolution of atomic-scale structure is 
determined by making and breaking chemical 
bonds and rearranging atoms, the evolution occurs 
on the time scale of a vibrational period, ~100 fs.
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Pump/Probe Chemistry

Measure the spherically 
averaged molecular form-
factor as a function of 
time after the laser pulse.

Pump (laser) pulse

Probe (X-ray) Pulse

Molecular 
Beam
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Ultrafast Chemical Reactions

Scientific challenge is to understand the structural 
evolution of the “transition state(s)” intermediate 

between reactant and product species.

S. Techert, F. Schotte, and M. Wulff,  Phys. Rev. Lett. 86, 2030-2033 (2001).
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Picosecond Crystallography

Photo-excitation of C9H10N2

Intensity difference map of powder 
pattern @ 80 ps.

Change of the integrated Bragg intensities 
as a function of time.

S. Techert, F. Schotte, and M. Wulff,  Phys. Rev. Lett. 86, 2030-2033 (2001).
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Ultrafast Structure Studies

Caltech’s Ultrafast Electron Diffraction (UED) apparatus. UED images of C2F4I2 (blue) and 1,3-
cyclohexadiene (red).

H. Ihee, V.A. Lobastov, U.M. Gomez, B.M. Goodson, R. Srinivasan, 
C.-Y. Ruan, and A. Zewail, Science 291, 458-462 (2001).
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Hydration Dynamics

Schematic illustration of Photo-neutralization of I- in liquid phase. 
EXAFS of 2s → 5p. Change in spectra arises from changed I-O 
distances. (From Schoenlein & Falcone)
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Electronic Systems

Charge Density Waves (CDWs) are a prototypic system for 
driven correlated systems with large numbers of degrees 
of freedom in the presence of random disorder.

NbSe3 is one of the best characterized systems that is 
frequently used as a reference point for other CDW 
systems.
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Diffraction from CDWs

Conduction 
electron density

Ionic Cores

E

EF

Density of 
States
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NbSe3 Properties

• monoclinic unit cell

• whisker axis || to b, b*

• width || c
• thickness || a*

• TP1 ≈ 145 K, TP2 ≈ 59 K
• Q1 ≈ (0 0.243 0)
• Q2 ≈ (0.5 0.26 0.5)

Hodeau et al., J. Phys. C 11, 4117 (1978)

a = 10.009 Å
b = 3.4805 Å β = 109.47
c = 15.629 Å
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Experimental Geometry

• Beryllium Top Hat
– x-ray transparent
– contains He exchange gas

• Alumina Substrate
– supports NbSe3 whisker
– four point connections

• Transmission Scattering 
Geometry
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Typical Pinning Data

K.L. Ringland et al., PRL 82(9), 1923-26 (1999).

• Current is on for t < 0
• Current is off for t > 0
• CDW satellite responds 

by
– sharpening
– (possibly) small 

rotation
– integrated intensity 

remains constant
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Approximate form for S(q,t)
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Simple “stretched exponential” kinetics
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Results of Analysis

• Solid lines are 
best fit results 
using only data 
from t > τ

• 2 parameter fit (µ
and τ)

• χ2 ≈ 1.5
• ~ 2 × 104 degrees 

of freedom.
• Arrows indicate 

times for the 
“slices” depicted.
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Results

• Elastic (FLR) theory works for pinned state structure.
• Elastic theory gives correct line-shape above threshold 

but incorrect numerical value for exponent.
• Time resolved measurements demonstrate pinning 

dynamics are not correctly described by elastic theory.
• X-rays do not observe any structural signal associated 

with dramatic transport phenomena (e.g., mode-locking).

Suggests that lattice distortion wave is decoupling from 
conduction electron density wave
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Ultrafast Diffraction from CDWs

Conduction 
electron density

Ionic Cores

E

EF

Density of 
States
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Ultrafast Diffraction

Continuum

K

L

M
N

Resonant Scattering

• Electrons respond on time-
scales determined by Fermi 
velocity. 

• Lattice responds on time-
scales determined by the 
speed of sound.

Need diffraction to 
amplify signal. But, 
diffraction is from a 
periodic structure.

Example: Charge-Density Waves

Use resonant x-ray 
scattering to sample 
unoccupied density of 
states of conduction band.
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XPCS or “Speckle” Experiments

sample

dete
cto

r

Coherent 
x-rays 2θ

Allows measurement of very “slow” dynamics at 
finite q in opaque materials.
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Colloidal Suspension

A dense system of hard-
sphere colloidal 
polystyrene particles, 
with a nominal radius of 
71 nm, suspended in 
glycerol at a volume 
fraction of φ = 50.28.

D. Lumma, L.B. Lurio, S.G.J. Mochrie, and M. 
Sutton, Rev. Sci. Instrum., 71(9), 3274-3289 

(2000).
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Limits
Transverse coherence length.

( )πσλξ 2/R′=

State of the Art: IMM-CAT (sector 8) at APS (σ values)

m
m

vert

hor

µξ
µξ

28
4

≈
≈

Restricted to using whiskers with widths less than 10 µm.
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Coherent X-rays and Speckle: 
Equilibrium Dynamics

High resolution photograph 
of (0 1+q 0) CDW satellite 
in NbSe3.

(a) False color CCD image of (0 1+q 0) CDW satellite in 
NbSe3. (b) Slice of image shown in (a).

Y. Li, R.E. Thorne, M. Sutton, and J.D. Brock, unpublished data.
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Field Broadening

Q1 CDW, T = 100K
Top: I = 0

Center: I = 0.8 × IT

Bottom: I = 2 × IT

Averaged over 200 frames and 5 sec 
each.
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Autocorrelation in Time

E < ET: Static
E ≥ ET: Static
E ≈ ET

*: Dynamic
E >> ET

*:“Fast”
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Summary

Elastic/coherent/adiabatic flow

Plastic flow

Slow fluctuations
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WAXS: Effect of q on coherence

β versus wavevector calculated for APS undulator A. A slit of 4 × 10 µm (H×V) is 55 m 
from the source, the energy is 7.66 KeV with ∆E/E = 7 × 10-5 (C(111)) and the sample is 
5 µm thick. The upper line is for reflection geometry and the lower line for transmission.

(Courtesy Mark Sutton)
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Comparative Parameters

1020 – 10213.1 × 10201.5 × 1019Average  
Brightness
[photons/sec/
0.1%bw/mm2/
mrad2]

133573Pulse Length
[psec]

1015 – 10167 × 1014Average flux
[photons/sec/
0.1%bw]

NSLS IIESRFAPS (Und A)



Strongly Correlated Electrons: NSLS II and the Future August 29, 2003
29

Charge

Question: “Specifically, what would an extra factor of 10 in 
coherent flux over present APS buy you in these 
experiments? What could you then do in the field of 
strongly correlated electron systems?”
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Impact of NSLS II

At small q

contrast ~ (coherence volume) / 
(scattering volume)

At high q

contrast decreases as path 
length increases

(3) Need full transverse (and 
increased longitudinal) coherence.

(1) Increased coherent flux
allows experiments to probe

• faster times

• higher q’s

•more weakly scattering samples

Coherent Flux ~ B (λ2)(δλ/λ)

(2) Need increased brilliance
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Conclusions

Exciting scientific opportunities driven by increased brilliance.

• Ultra-fast structural studies

• XPCS (Speckle) Experiments
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